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Abstract Movement plays a role in structuring the interactions between individuals, their
environment, and other species. Although movement models coupled with empirical data
are widely used to study animal distribution, they have seldom been used to study search
time. This paper proposes first passage time as a novel approach for understanding the
effect of the landscape on animal movement and search time. In the context of animal
movement, first passage time is the time taken for an animal to reach a specified site
for the first time. We synthesize current first passage time theory and derive a general
first passage time equation for animal movement. This equation is related to the Fokker–
Planck equation, which is used to describe the distribution of animals in the landscape. We
illustrate the first passage time method by analyzing the effect of territorial behavior on the
time required for a red fox to locate prey throughout its home range. Using first passage
time to compute search times, we consider the effect of two different searching modes
on a functional response. We show that random searching leads to a Holling type III
functional response. First passage time analysis provides a new tool for studying how
animal movement may influence ecological processes.

Keywords First passage time · Animal movement · Search time · Predation

1. Introduction

Movement is a central theme in ecology, determining in part what animals eat, where they
live, their survival, and their reproductive output. The movement patterns we observe may
depend upon the distribution of resources and other species in the landscape. Therefore,
movement data can be used to interpret species interactions with each other and their
environment. To date, mechanistic movement models coupled to empirical data have been
used to explain the distribution of animals in space (Turchin, 1991; Okubo and Levin,
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2001). Despite the widespread use of movement models to understand animal distribution,
their full potential remains unexploited. Besides animal distribution, search time plays an
essential role in predator-prey dynamics. Search time is the time required for the predator
to find a prey (Holling, 1959). Models of search time as a function of the interaction
between animal movement and the environment are uncommon (but see McCauley et al.,
1993).

This paper describes a method for modeling search time as a function of animal move-
ment using theory from the physical and mathematical literature on first passage time.
First passage time is the time required for a random variable, such as an animal’s loca-
tion in space, to go from a given starting point to a predefined endpoint (Redner, 2001).
Search time, the time taken for a predator to find a prey, is an example of a first passage
time where the prey location is the endpoint. Though much of the first passage time theory
has been previously developed (Gardiner, 1985; Redner, 2001; Condamine et al., 2007;
Ovaskainen, 2008), it has not been widely placed in the context of animal movement. We
do so here by synthesizing first passage time theory using examples from animal move-
ment, deriving a general equation for first passage time from a random walk in a het-
erogeneous environment, and discussing the connection to the backward Fokker–Planck
equation.

Using first passage time, we analyzed red fox (Vulpes vulpes) movement data to un-
derstand the effect of prey distance from den site on search time for prey within a red fox
home range. The idea of a home range was first proposed by Burt (1943) and subsequent
analysis of animal locations support Burt’s suggestion that movement of nonmigratory an-
imals is not random in the landscape, but focused within a home range (Siniff and Jessen,
1969). A simple model for animal movement within a home range was first proposed by
Holgate (1971) and further described by Okubo and Levin (2001). The Holgate–Okubo
model assumes a centralizing tendency in the animal’s movement directions because of
the need to care for young located at the den site. During denning, many canids, includ-
ing the red fox, display the central foraging behavior that is well described by this model
(Siniff and Jessen, 1969; Mech and Boitani, 2003), which we use as the basis for our first
passage time model.

In addition to understanding how search time varies with animal movement, we can in-
corporate this variation into the functional response. The shape of the functional response,
which describes the number of prey consumed by a single predator as a function of prey
density and predator behavior (Solomon, 1949; Holling, 1959) depends heavily on search
time. In the derivation of the Holling disk equation, Holling (1959) assumed that preda-
tors moved at a constant speed and searched a constant area per unit time. This directed
predator movement resulted in a linear (type I) functional response. When handling time
was included, the functional response become concave asymptotic (type II). Holling also
suggested the existence of a sigmoidal functional response (type III). Prey switching and
prey refuges have been evoked as potential biological mechanisms explaining the type
III functional response. In this paper, we demonstrate that random predator searching of-
fers an alternate explanation for the type III functional response. Because first passage
time is derived from individual movement behavior, it can be used to derive a functional
response that accounts for different types of searching behaviors. We derive functional
responses without and including handling time for pure advection and simple diffusion in
a one-dimensional homogeneous landscape, and discuss their biological interpretations.
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2. First passage time and animal movement

Though widely discussed in the physical literature, first passage time has received mini-
mal attention from ecologists. This is perhaps because of its highly theoretical treatment
to date. First passage time was first discussed in an ecological context by Berg (1993)
who calculated the mean time to capture of a randomly moving bacteria by a sticky disk
at the center of a homogeneous Petri dish. First passage time was also proposed as an al-
ternative to mean squared displacement to characterize diffusion behavior (Johnson et al.,
1992) and used to identify optimal search strategies (Benichou et al., 2005). In the above
examples, the mean first passage time is calculated from diffusion-type equations based
on description of movement as a random walk. Empirically calculated first passage times
have been used as a measure of search time along a path (Fauchauld and Tveraa, 2003)
and to distinguish between movement behaviors at different scales (Frair et al., 2005). We
show that a general equation for first passage time, which incorporates empirical data, can
be widely applied to ecological questions related to animal movement.

Diffusion describes how a group of individual particles spreads out due to the irregular
motion of each particle (Okubo and Levin, 2001). When applied to animals, diffusion may
alternatively be viewed as describing the distribution of a large population of animals or
the expected location of an individual animal in space and time. General diffusion models
are appropriate for describing the distribution of animals in time and space for many
ecological systems (Turchin, 1991; Holmes et al., 1994; Okubo and Levin, 2001). To date,
ecologists have used diffusion to describe the expected location of an animal after a certain
amount of time. We turn this question on its head and ask how long, on average, it takes
an animal to reach a particular location for the first time. In the first case, it is the animal
location at a fixed time that is of interest, whereas in the second case, we are concerned
with time taken to reach a fixed location. The equation for mean first passage time can
be interpreted as the average time taken by many animals beginning at the same start
location to reach the fixed location or endpoint. Commonly, the endpoint (e.g., the prey)
is assumed to be stationary, while the animals (e.g., the predators) are mobile. Indeed this
assumption is necessary to solve the advection-diffusion formulation of the mean first
passage time problem proposed here (see Redner and Krapivsky, 1999; Moreau et al.,
2004; Dushek and Coombs, 2008 for examples where mobile endpoints are considered).
However, there are many biological examples where it is reasonable to consider stationary
prey. Imagine the case where the mobility of the predator is much greater than that of
the prey, for example, red foxes preying on duck nests (Sovada et al., 1995). In addition,
models predict that the best strategy for prey in the presence of diffusing predators is to
remain stationary (Moreau et al., 2003, 2004). Therefore, it is of interest to consider the
case of stationary prey in the context of first passage time. An equation for mean first
passage time is obtained by reformulating the random walk and applying the diffusion
approximation (Skellam, 1991; Berg, 1993). To demonstrate this method, we review the
formulation of the mean first passage time equation for an unbiased random walk with
constant diffusion (Berg, 1993). More complex movement behaviors, including spatially
variable diffusion and attraction toward a bias, are considered in the Section 3.5.

Let the mean first passage time from location x be denoted T (x). An animal undergo-
ing an unbiased random walk located at x has equal probability of jumping a step δ to the
left or right. The mean first passage time from the current location x is equal to the sum of
the mean first passage times from all possible next locations multiplied by the probability
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of moving to those locations, plus the time taken to move, τ . This is summarized by the
equation,

T (x) = τ + 1

2
T (x − δ) + 1

2
T (x + δ). (1)

Using Taylor series expansion and applying the diffusion approximation (Appendix A),
we obtain the differential equation

d
d2

dx2
T (x) + 1 = 0 (2)

where d is the diffusion coefficient. The diffusion approximation relates movement in
discrete and continuous space (Skellam, 1991) and requires the assumption that the ani-
mal takes shorter and shorter steps in shorter and shorter time intervals, so that the step
length and time interval both approach zero (see Holmes et al., 1994 for a discussion of
this assumption). To solve Eq. (2), we must define an appropriate domain and boundary
conditions. The domain must be finite to ensure that T (x) is well defined. Further, we
assume the animal remains in the domain. Therefore, because the animal is reflected at
the edges of the domain, the mean first passage time does not change with space and we
use a Neumann condition, d

dx
T (x) = 0. Islands, lakes, home ranges, or habitat patches

with impermeable boundaries are all examples of ecologically reasonable domains. At
the endpoint, the animal is absorbed and the random walk ends. Therefore, the mean first
passage time for an animal beginning at the endpoint, xe , is zero, because the animal
is immediately absorbed and we use a Dirichlet boundary condition, T (xe) = 0. In the
following examples, we use the one-dimensional domain of length L with Dirichlet and
Neumann boundary conditions at 0 and L, respectively. Biologically, this domain might
be an example of a corridor with a good habitat patch at 0 and a bad habitat patch at L.
Then Eq. (2) has solution

T (x) = 1

2d

(
2Lx − x2

)
. (3)

It may also be of interest to ask how long until an animal leaves the domain. For example,
to model the length of time spent foraging in a particular habitat patch. In this case, both
0 and L are subject to Dirichlet conditions and the solution to Eq. (2) becomes

T (x) = 1

2d

(
Lx − x2

)
. (4)

The mean first passage time for these two scenarios is shown in (Fig. 1a). The solutions
show that on average animals beginning further from the endpoint take longer to reach it
than animals that start closer to the endpoint. Therefore, first passage time will always be
monotonically decreasing in the neighborhood of the endpoint.

3. First passage time in spatially heterogeneous landscapes

Most animals do not move according to an unbiased random walk. Movement occurs on
a complex landscape template, where many landscape features may affect animal move-
ment. Therefore, first passage time based on an unbiased random walk usually will not
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Fig. 1 Example solutions to mean first passage time equations. (A) Mean first passage time for diffusion
walk with homogeneous Dirichlet (solid line) and mixed Dirichlet and Neumann (dashed line) boundary
conditions at 0 and 1, respectively. The diffusion coefficient is d = 0.5. (B) Mean first passage time for
simple diffusion with spatially variable diffusion coefficient in a two-patch environment divided at a = 0.5
with mixed boundary conditions. The solid and dotted lines represent the solution in homogeneous en-
vironments with slow (d = 0.1) and fast (d = 0.8) diffusion. The dash-dotted line is the solution for the
heterogeneous environment. (C) Mean first passage time for diffusion and advection with homogeneous
Dirichlet boundary conditions. The solid line is the solution for simple diffusion with c = 0 and d = 0.5.
The dotted and dashed lines are solutions for diffusion and advection with d = 0.5 and c = ±3, respec-
tively.

be a good approximation of search time. In this section, we use the random walk frame-
work to derive the more general equation for first passage time for animal movement.
We divide the influence of landscape heterogeneity on animal movement into two parts:
movement rate and movement direction (Weins, 2001). Habitat structure may vary, re-
sulting in varying movement rates between different habitats in the landscape. For exam-
ple, wolves are observed to move greater than two times faster on linear features than in
the forest (James, 1999) and prairie butterflies move faster between habitat patches than
within them (Schultz and Crone, 2001). Spatial variability in movement speed is incorpo-
rated into the model by allowing the diffusion coefficient to vary in space. Animals may
also bias their movement directions relative to landscape features. For example, red fox
movements are directionally biased toward den site (Siniff and Jessen, 1969) and male
checkerspot butterflies bias their movement in the uphill direction when searching for
mates (Turchin, 1991). Directional bias is introduced into the model with an advection
term describing the directed component of movement. This more complex movement can
still be treated using the same approach illustrated for the simple case above. Before giv-
ing some examples of models for more complex movement behavior, we consider how
empirical data is incorporated into the first passage time model.

3.1. Spatially variable movement rates

Following Moorcroft and Lewis (2006), we generalize the first passage time model by
deriving advection and diffusion coefficients which are functions of animal movement
data. To do this, we summarize the movement data in the form of a redistribution kernel,
which is a density function describing the probability that an animal jumps from its current
location to a new location (Moorcroft and Lewis, 2006) and we allow the animal to move
steps of different lengths in any one time step. The end result is an equation where the
advection and diffusion coefficients are functions of the animals redistribution kernel.

Consider the lattice {−L,−L + δ,−L + 2δ, . . . ,−δ,0, δ, . . . ,L − 2δ,L − δ,L} and
suppose the animal is located at x. In the next time step, the animal can make a jump of
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size nδ, where n > 0 is a movement to the right, n < 0 is a movement to the left, and n = 0
represents the event the animal stays still. Then the redistribution kernel k(x, x + nδ, τ )

gives the probability the animal jumps from x to x +nδ in time τ . Because k incorporates
all possible jumps,

∑∞
n=−∞ k(x, x + nδ, τ ) = 1. Using the redistribution kernel, we can

rewrite the master equation for the mean first passage time as

T (x) = τ +
∞∑

n=−∞
k(x, x + nδ, τ )T (x + nδ). (5)

Taking the limit as the step size and using the definition of the integral, Eq. (5) becomes

T (x) = τ +
∫ ∞

−∞
k(x, x ′, τ )T (x ′) dx ′ (6)

where x is the current location and x ′ is the next location. We define a new variable a =
x ′ − x for the distance between x and x ′. Then the redistribution kernel can be rewritten
as K(x,a, τ ) where x is the current location and a is the jump distance in time τ . After
applying the diffusion approximation to Eq. (6) (Appendix C), we obtain the mean first
passage time equation

c(x)
∂T

∂x
+ d(x)

∂2T

∂x2
+ 1 = 0 (7)

where now the advection and diffusion coefficients are the first and second infinitesimal
moments of the redistribution kernel (Moorcroft and Lewis, 2006)

c(x) = lim
τ→0

1

τ

∫ ∞

−∞
aK(x, a, τ ) da (8)

and

d(x) = lim
τ→0

1

2τ

∫ ∞

−∞
a2K(x,a, τ ) da. (9)

Therefore, animal movement data is incorporated into the coefficients of the mean first
passage time equation through the redistribution kernel.

3.2. Examples of complex movement behaviour

Consider first spatially varying diffusion and no advection (c(x) = 0). Dividing the do-
main of length L into patches of fast and slow diffusion, subject to boundary conditions
T (0) = 0 (Dirichlet, absorbing) and d

dx
T (L) = 0 (Neumann, reflecting), the solution to

Eq. (7) found by integrating is

T (x) =
⎧
⎨

⎩

1
2d1

(2ax − x2) + 1
2d2

(x − xa), x ∈ (0, a),

a2

2d1
− a2

2d2
+ 1

2d2
(2Lx − x2), x ∈ (a,L).

(10)

If d1 = d2, Eq. (10) reduces to the solution of the unbiased random walk equation Eq. (3)
(Berg, 1993). From the solution to the two-patch example, we see that spatial variation
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in the diffusion coefficient is reflected in the mean first passage time (Fig. 1b). For all
starting locations, animals moving in the patchy landscape arrive at the endpoint later on
average than animals moving in the fast landscape, but earlier than animals moving in a
slow landscape.

Alternatively, we consider movement with both advection and diffusion. It is possi-
ble to solve Eq. (7) analytically if c and d are constant. On a domain of length L with
homogeneous Dirichlet boundary conditions T (x) = T (L) = 0, Eq. (7) has solution

T (x) = L(exp[−c/d(x)] − 1)

c(exp[−c/d(L)] − 1)
− x

c
. (11)

The effect of the movement bias is to skew the mean first passage time away from the
bias point (Fig. 1c). The relation between the magnitudes of the directed and random
components of movement will determine the shape of the mean first passage time curve.
The larger the advection coefficient with respect to the diffusion coefficient, the more
linear the mean first passage time curve will be.

3.3. Mean first passage time in two-dimensions

Extending the model to two-dimensions is straightforward. Let be the mean first passage
time for an animal located at x = (x, y) and a = x′ − x the distance between the cur-
rent and next location. In two-dimensions, the redistribution kernel is a two-dimensional
probability density function k(x,x′, τ ) describing the probability of moving from a small
rectangle [x,x + dx) at time t to another small rectangle [x′,x′ + dx′) at time t + τ . In
vector notation, the master equation becomes

T (x) = τ +
∫

k(x,x′, τ ) T (x′) dx′. (12)

Redefining the redistribution kernel as before to be where and applying the diffusion ap-
proximation yields the mean first passage time in two-dimensions (Appendix D)

c(x) · ∇T (x) + dxx(x)
∂2

∂x2
T (x) + dxy(x)

∂2

∂x∂y
T (x) + dyx(x)

∂2

∂y∂x
T (x)

+ dyy(x)
∂2

∂y2
T (x) + 1 = 0 (13)

where the spatially dependent advection and diffusion coefficients are given by

c(x) = lim
τ→0

1

τ

∫
aK(x,a, τ ) da, (14)

dxx(x) = lim
τ→0

1

2τ

∫
a2

1K(x,a, τ ) da, (15)

dxy(x) = lim
τ→0

1

2τ

∫
a1a2K(x,a, τ ) da, (16)
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dyx(x) = dxy(x), (17)

dyy(x) = lim
τ→0

1

2τ

∫
a2

2 K(x,a, τ ) da. (18)

Solutions to Eq. (13) with coefficients defined by Eqs. (14)–(18) exist for continu-
ous functions K(x,a, τ ) > 0 for all x,a, and τ . To see this, define an inner product
〈f (a), g(a)〉 = ∫

f (a)g(a)K(x,a, τ ) da where f (a) and g(a) are continuous functions
of a. It is then possible to show by using the Cauchy–Schwarz inequality for the resulting
weighted Hilbert space, that the coefficient matrix associated with the second order oper-
ator is symmetric positive definite and, therefore, has only positive eigenvalues, meaning
the equation is elliptic and solutions exist. The requirement that the redistribution kernel
is positive everywhere means that any move is likely to occur with some nonzero proba-
bility. This is the case for biologically relevant redistribution kernels.

3.4. Interpreting mean first passage time

The solution to the mean first passage time equation is a curve (for movement in one-
dimension) or surface (for movement in two-dimensions) whose value is the mean time to
arrive at a specified location for the first time as a function of the starting location x. The
solution gives the mean first passage time for every possible starting location in the do-
main. While the curve or surface gives a qualitative picture of how the mean first passage
time changes throughout the landscape, it may be difficult to use this information without
a summary statistic. This is particularly true if mean first passage time is being compared
across different landscapes. One possible summary statistic is the spatial average of the
mean first passage time over the landscape

Tavg =
∫

x∈�

u0(x)T (x) dx (19)

where u0(x) is the initial probability distribution of the animals in space. If u0(x) is as-
sumed to be a uniform distribution, Tavg is equivalent to the expected mean first passage
time from a random starting location (Benichou et al., 2005). If the initial distribution
of animals in space is known, Tavg is interpreted as the expected mean first passage time
conditional on the initial distribution of animals. Therefore, the mean first passage time
solution provides a map of how long on average it would take to arrive at the specified
endpoint given different starting locations and can be summarized into a metric that facil-
itates comparisons among landscapes or searching strategies.

3.5. Connecting animal distribution and search time

The mean first passage time equation is related to the Kolmogorov equations (Gardiner,
1985). The forward and backward Kolmogorov equations describe the time evolution of
stochastic processes. Gardiner (1985) elegantly describes the relationship between the
backward and forward Kolmogorov equations, as well as their relationship to first pas-
sage time. We briefly summarize this description here. In one dimension, the forward
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Kolmogorov equation, also known as the Fokker–Planck equation,

∂

∂s
u(x, s) = − ∂

∂x

[
c(x)u(x, s)

] + ∂2

∂x2

[
d(x)u(x, s)

]
(20)

describes how the probability density function for the location of an animal in space
u(x, s), changes over time (Turchin, 1998; Okubo and Levin, 2001). The initial proba-
bility density function for the initial location of the animal, ut (x), is an initial condition
and the expected location is integrated forward in time for the solution at time s > t . The
backward Kolmogorov equation

− ∂

∂t
v(x, t) = c(x)

∂

∂x

[
v(x, t)

] + d(x)
∂2

∂x2

[
v(x, t)

]
(21)

is the adjoint of Eq. (20) and describes the probability that the animal arrives in some set
of final locations at a future time s, for all initial locations at the current time t . Therefore,
the set of final locations, vs(x), is a final condition and v(x, t) is integrated backward in
time.

The first passage time equation arises from the backward Kolmogorov equation, as we
are interested in the length of time taken for the animal starting at a current position to ar-
rive in the set of final locations at some later time. While we derived the first passage time
equation directly from a random walk formulation, the backward Kolmogorov equation
provides an alternate derivation of the first passage time equation based on moments (for
details, see Appendix E).

4. First passage time analysis of animal movement

We have proposed first passage time as an alternate method for quantifying animal move-
ment rates in heterogeneous landscapes. For example, it can be used to determine the
effect of different movement behaviors on search time. To illustrate the method, we apply
first passage time analysis to understand how central-place foraging behavior of the red
fox affects search time for prey. Red fox movement data was collected by Siniff and Jessen
(1969) at the Minnesota Creek Long-Term Ecological Research Site in the spring of 1969
using an automated tracking system that relocated the animal at 10 minute intervals (see
Siniff and Jessen, 1969). The animals movement path can be broken down into distances
moved and direction of move relative to den site that characterize the animals movement
(Fig. 2). The overall pattern of space use suggests the red fox is confining its movement
within a finite area. In addition, there is a higher occurrence of moves toward the den site
than in any other direction, suggesting a bias toward the den site. These observations raise
the question: How might the observed bias toward the den site affect the search time of
the red fox for prey throughout its territory? Mean first passage time is an appropriate
metric for answering this question because it enables us to translate the observed random
walk of the red fox into an equation for mean first passage time where the advection and
diffusion coefficients are computed directly from empirical movement data.
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Fig. 2 Movement data of a red fox (Siniff and Jessen, 1969). (A) Observed path of an individual red fox
recorded by the Minnesota Cedar Creek tracking system over a 30-day period. The black triangle represents
the assumed den site location. (B) Observed distribution of distances between successive relocations for
the individuals path shown in A. (C) Observed distribution of movement directions relative to the location
of the den site for the individuals path shown in A.

4.1. Influence of central place foraging behavior on first passage time to prey

The Holgate–Okubo model was mechanistically derived and parameterized by Moorcroft
and Lewis (2006) using the red fox location data (Siniff and Jessen, 1969). The expected
location of the red fox u(x, s), is described by the forward Fokker–Planck equation

∂u

∂s
= −∇ · [c(x)u

] + ∇2[du], (22)

with constant diffusion coefficient d = 0.41 km2/h and advection vector c(x) = −c x/‖x‖
pointing in the direction of the home range centre with magnitude c = 0.085 km/h. The
details for calculating the advection and diffusion coefficients from the red fox movement
data are found in Appendix D. The steady state solution to this equation, which describes
the long-term pattern of space use of the red fox is given by

u(x, y) = c2

d2π
E1

[
c

d

√
x2 + y2

]
(23)

where E1 is the exponential integral
∫ ∞

u

exp[−t]
t

dt . Figure 3 shows that the expected pat-
tern of space use is radially symmetric around the home range center and the individual
is more likely to be found close to the home range center. The fit of the model to the data
is further analyzed and discussed in Moorcroft and Lewis (2006).

We are now ready to address the question of how the central foraging behavior affects
the search time of a red fox for prey throughout its territory. Using mean first passage
time, we compare the search times for prey of a red fox moving according to the Holgate–
Okubo centralizing tendency model (biased random walk) to that of one moving randomly
(unbiased random walk). From Eq. (13) and the assumption of isotropic diffusion, the
mean first passage time equation for the Holgate–Okubo model is

c(x) · ∇T (x) + d ∇2T (x) + 1 = 0, (24)

with advection and diffusion coefficients as described above. If there is no centralizing
tendency (c = 0), then c(x) = 0 and Eq. (24) describes the mean first passage time to
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Fig. 3 Steady state solution to the centralizing tendency model for the Cedar Creek red fox. The assumed
location of the den site is shown (black diamond).

prey when the fox is moving without the centralizing tendency (random walk). To obtain
mean first passage time to prey for a red fox moving with and without the centralizing
tendency, Eq. (24) was solved for c = 0.085 km/h and c = 0 km/h on a circular domain
similar in area to the 95% minimum convex polygon for the expected location of the
red fox (radius of 1.5 km, Moorcroft and Lewis, 2006). The edges of the domain were
subject to Neumann (reflecting) conditions. Ecologically, this corresponds to the red fox
remaining within its home range. Prey were specified at distances of 0, 0.25, 0.5, 0.75,
1, 1.25, and 1.5 km due south of the den site as a disk of radius 10 m with Dirichlet
(absorbing) boundary conditions. Solutions were found numerically (Appendix F) and
summarized using Tavg, where the initial distribution of expected starting locations for
the red fox u0(x) in Eq. (19) was assumed to be the uniform distribution for randomly
moving foxes and the steady state solution to the forward Fokker–Planck equation given
by Eq. (23) for foxes moving with a centralizing tendency.

The mean first passage time surfaces differ for movement with and without a centraliz-
ing tendency (Fig. 4). The Tavg for both models increased with prey distance from the den
site (Fig. 5). As would be expected, prey near the den site were located faster by animals
with the centralizing tendency, whereas prey farther from the den site were located more
quickly by randomly searching animals. For the parameters used here, the switch occurred
approximately when the prey was located 1 km from the home range center. The degree
to which central place foraging (c = 0.085 km/h) improved the rate of prey location near
the den site over random foraging (c = 0 km/h) was striking: Prey near the den site were,
on average, located 4 times faster by central place foraging (comparing the average of the
no-bias/bias search times for the first 4 prey locations). This is due to the combined effects
of the central place foragers starting closer to the den site on average (see u0(x), Fig. 3),
the additional speed with which the central place foragers moved (due to the contribution
from the advection term: c = 0.085 km/h versus c = 0 km/h), and their tendency to return
to the den site.
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Fig. 4 Mean first passage time of the Cedar Creek red fox to prey predicted by the model.

Fig. 5 Spatial average of the mean first passage time for the Cedar Creek red fox to prey predicted by
the model, assuming movement without (c = 0 km/h, solid line) and with (c = 0.085 km/h, dotted line) a
centralizing tendency.

5. Incorporating movement into the functional response

We now apply first passage time methods to the mechanistic derivation of functional re-
sponses. The Holling disk equation for the functional response assumes a constant area
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is searched for new prey per unit time (Holling, 1959). This is consistent with pure di-
rected motion (advection), where displacement of an individual increases linearly with
time. Here, the size of the region searched scales linearly with the time elapsed. However,
for random motion (diffusion), it is the mean squared displacement that increases linearly
with time. In this case, the size of the area searched scales with the square root of the time
elapsed. In other words, to search an area of twice the size requires four times longer.
This scaling arises from the fact that Brownian motion allows individuals to move back
and forth over regions recently searched, via random switching of direction. In this sec-
tion, we deduce the effect of random versus directed movement behavior on the functional
response. We consider only the case where prey are stationary and located randomly in
space.

Consider an infinite one-dimensional landscape where prey are distributed according
to a Poisson process with intensity λ per unit length (λ is equivalent to N , the expected
density of prey). The waiting times or times between consecutive events of a Poisson
process are exponentially distributed (Karlin and Taylor, 1998). Denote the locations of
prey as {. . . , x−3, x−2, x−1,0, x1, x2, x3, . . . }. Translating this to a Poisson process for prey
locations in space indicates the distances between prey, xi , are exponentially distributed,

g(xi) = λ e−λxi . (25)

Without loss of generality, we consider the subdomain [0, x1] to be representative, where
prey are located at 0 and x1. Suppose T (x) is the solution to the mean first passage time
equation on [0, x1], given some underlying movement and homogeneous Dirichlet bound-
ary conditions at x = 0 and x = x1. Then the expected mean first passage time on [0, x1],
assuming a uniform distribution of starting locations of the predator, is

E
[
T (x)|x1

] = 1

x1

∫ x1

0
T (x) dx. (26)

Now, the expected mean first passage time over all possible subdomains [0, x1] is

E
[
T (x)

] =
∫ ∞

0
E

[
T (x)|x1

]
g(x1) dx1. (27)

Then an estimate for the rate at which predators encounter prey as a function of prey
density is given by E[T (x)]−1. We used this method to derive functional responses for
predators undergoing pure advection and simple diffusion.

5.1. Pure advection

The mean first passage time equation for pure advection is given by Eq. (7), where d = 0
and c is constant. For this case, the solution is

T (x) = L − x

c
. (28)

Substituting Eq. (28) into Eq. (26), the expected mean first passage time for a fixed x1 is

E
[
T (x)|x1

] = 1

x1

∫ x1

0

x1 − x

c
= x1

2c
(29)
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Fig. 6 The functional response derived assuming an underlying movement mechanism. (A) Functional
response without handling time for pure advection (solid line) and pure diffusion (dashed line). (B) Func-
tional response including handling time for pure advection (solid line) and pure diffusion (dashed line).
The parameters are c = 0.25 km/h, d = 0.1 km2/h, and Th = 2 h.

and the expected mean first passage time is

E
[
T (x)

] =
∫ ∞

0
λe−λx1

x1

2c
dx1 = 1

2cλ
. (30)

Therefore, the encounter rate is 2cλ. This is equivalent to the Holling Type I functional
response where a = 2c, fc(N) = 2cN (Fig. 6a, solid line).

5.2. Simple diffusion

Now consider a predator moving according to simple diffusion. Then T (x) =
1

2d
(2x1x − x2) and the expected mean first passage time for a fixed x1 is

E
[
T (x)|x1

] = 1

x1

∫ x1

0

x(x1 − x)

2d
= x2

1

12d
, (31)

and the expected mean first passage time is

E
[
T (x)

] =
∫ ∞

0
λe−λx1

x2
1

12d
dx1 = 1

6dλ2
. (32)

The rate that a single predator encounters prey as a function of prey density, λ, is 6dλ2,
leading to the functional response fd(N) = 6f N2 (Fig. 6a, dotted line).

5.3. Including handling time in the functional response

We extend the results from the above encounter rate calculations to include handling
time, Th. Following the argument of Gurney and Nisbet (1998), the average number of
prey items ingested by an individual predator per unit time is given by

f (N) = R

1 + ThR
(33)

where predators capture prey at an average rate R per unit time. For each underlying
movement mechanism (i.e., pure advection or simple diffusion), R can be obtained from
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the encounter rates above. Therefore, the functional responses with handling time assum-
ing pure advection and simple diffusion are

fc(N) = 2cN

1 + Th2cN
(34)

and

fd(N) = 6cN2

1 + Th6cN2
, (35)

respectively (Fig. 6b, solid and dotted lines).
The directed searching originally described by Holling (1959) is consistent with advec-

tive movement. However, predators display a wide range of movement behaviors during
searching ranging from random (diffusive) to directed (advective) movement, and includ-
ing alternation of these (Bell, 1991). We answered the question as to how the underlying
predator movement during searching changes the form of the functional response, using
a mechanistic biased random walk model for predator searching. This outcome is an al-
ternate derivation for the Type III functional response which is based on random predator
searching.

6. Discussion

Advection and diffusion models are widely applied in ecology to understand how land-
scape animal movement and landscape heterogeneity effect animal distribution (Turchin,
1991; Holmes et al., 1994; Okubo and Levin, 2001). The forward Fokker–Planck equation
relates animal movement to the probability of the animal occurring at a particular point
in time and space and time. However, it is often important to know when the animal first
arrived at a given location. This is relevant, for example, when animals must gain control
of a territory or obtain a limited resource. Drawing on established physical literature, we
derived from first principles, an equation for the mean first passage time of an animal in a
two-dimensional heterogeneous landscape that incorporated directed (advection) and ran-
dom (diffusion) components of movement and can be coupled with empirical movement
data. Similarly, the mean first passage time equation can be derived directly from the
backward Fokker–Planck equation (Gardiner, 1985). The equation is then solved either
analytically or numerically, depending on the complexity of the movement behavior and
landscape structure. The solutions to the mean first passage time equation provide insight
into the effect of the interaction between the landscape and animal movement behavior on
the search time. They can be interpreted graphically by examining the mean first passage
time surface and quantitatively by using mean first passage time from particular starting
locations or a summary statistic, such as the average mean first passage time over space.
We view the description of animal distribution and mean first passage time analysis as
complimentary, providing tools to answer different but related questions. We focused on
the interpretation of first passage time as the search time of a predator for prey, but recog-
nize that search time may also be interpreted more broadly as the time taken by an animal
to find food, refuge, or mates. Additionally, search time could refer to the time needed for
a parasite or disease to come into contact with a new host.
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One application of mean first passage time is to study the effect of landscape hetero-
geneity and animal search strategies on search times. In this paper, we considered the
effect of territoriality on search time of a red fox for prey. Mean first passage time analy-
sis indicated that foxes with a centralizing tendency found prey near their den site more
quickly than randomly moving foxes. This was true up to a certain distance of the prey
from the den site, after which point the randomly moving foxes found the prey more
quickly. This result has implications for prey, as it suggests that predation risk for prey
of territorial predators is related to prey distance from the den site. However, additional
factors such as neighboring foxes, resource distribution, and topography, were not in-
cluded in the model, but may influence red fox movement. Interested readers should refer
to Moorcroft and Lewis (2006) for examples of how to include more complex movement
behavior into animal movement models. Mean first passage time could also be used to un-
derstand the effect of landscape change on search time. For example, wolves move faster
on seismic lines and trails than in the forest (James, 1999). A mean first passage time
analysis would give insight as to how increasing seismic line density can affect search
time of a wolf for prey (McKenzie et al., in preparation). In this case, understanding how
search time will change is important for predicting potential consequences of increased
industrial development for predator-prey dynamics.

The mean first passage time equation is a general formulation for searching time that
models the random and directed movement of animals (Turchin, 1991). It is an approxima-
tion that uses the advection and diffusion coefficients as summary statistics for complex
spatial movement patterns (Holmes et al., 1994). Individual based simulations provide
an alternate method for computing first passage times. We highlight some advantages
and disadvantages of each method here. The general formulation for mean first passage
time yields an equation that need only be solved once either by analytical or numerical
methods, although solving the Poisson-type equation on an inhomogeneous domain is not
always trivial. This contrasts with individual based simulations of the same process. Ob-
taining a mean first passage time surface by simulation requires that n realizations of well-
defined animal movement be simulated from each possible initial starting location, where
n is large enough to provide a reasonable estimate of the mean. Whereas this simulation
process may be possible for simple problems, it becomes computationally intensive for
complex animal movement behavior in large heterogeneous landscapes (Grimm, 1999).
However, individual based simulations lead to the full distribution of first passage times
that is not available from the advection-diffusion approximation (see Gardiner, 1985, for
details on deriving partial differential equation models for higher order moments of the
first passage time).

The mean first passage time equation has the ability to model animal movement,
using summary statistics for animal movement (i.e., means and variances, as given in
Eqs. 14–18), even when the underlying detailed movement rules are unknown. This is
often beneficial, as detailed behavioral rules are rarely known for ecological processes
(Lima and Zollner, 1996; Belisle, 2005). Instead empirical movement data, such as move
distance and direction, can be used to calculate the summary statistics for animal move-
ment (Turchin, 1991). However, if more complex movement behavior is of interest, indi-
vidual based simulations are able to incorporate it. These could include, for example, com-
plex decision-making processes in response to environmental cues or temporally varying
environments. Thus, in general, the best approach will depend on the data available and
the desired information about the first passage time.
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Mean first passage time finds another application in investigating the effect of includ-
ing different animal movement mechanisms into the functional response. We found that
the functional responses of predators moving according to pure advection and diffusion in
one-dimension were qualitatively different. When we included handling time, we found
that the functional response of diffusing animals was sigmoidal, not concave asymptotic
as found by Holling (1959). Therefore, random searching behavior could be an alternate
biological mechanism to prey refuges or prey switching, which gives rise to the Holling
Type III functional response. However it is important to recognize that the analysis in
higher dimensions remains to be done. In addition, for the functional response includ-
ing handling time, it would be interesting to consider what would happen if the expected
functional response was evaluated directly instead of the function of the expectation of the
first passage time random variable. The effect on search time of switching between advec-
tive and diffusive movement has further been investigated by Moreau et al. (2007) using
a similar approach involving averaging over the length of subdomains. They found that
the optimal duration of phases in an intermittent searching strategy (i.e., where searchers
alternate between purely advective motion during which they are not able to detect prey,
and purely diffusive motion during which they have a nonzero probability of detecting
prey within a certain radius) differ depending on the prey distribution.

In summary, mean first passage time is a theoretical approach for modeling animal
movement. It contributes an equation for animal movement in heterogeneous landscapes
and opens up the potential for further research on the interaction between animal move-
ment and other ecological processes, such as predation, mate-finding, and disease trans-
mission. Future applications of mean first passage time could include interactions between
adjacent territory holders, dispersal, and mate finding in heterogeneous landscapes, the
effect of environmental heterogeneity on predator search time, or time to first contact in
spatial disease models.
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Appendix A: Unbiased random walk to mean first passage time equation

Using the random walk framework following Berg (1993), the first passage time is written
as

T (x) = τ + 1

2
T (x − δ) + 1

2
T (x + δ). (A.1)

Using Taylor series expansion, rewriting the above equation leads to

T (x) = τ + 1

2

(
T (x) − δ

dT

dx
+ δ2

2

d2T

dx2

)
+ 1

2

(
T (x) + δ

dT

dx
+ δ2

2

d2T

dx2

)
+ h.o.t.

(A.2)
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Divide through by τ and rearrange to obtain

δ2

2τ

d2T

dx2
+ 1 + h.o.t. = 0. (A.3)

Take the limit as δ, τ → 0 to arrive at the equation for mean first passage time

d
d2T

dx2
+ 1 = 0 (A.4)

where d = limδ,τ→0
δ2

2τ
is the diffusion coefficient.

Appendix B: Unbiased random walk with variable diffusion to mean first passage
time equation

The master equation describing the first passage time as a random walk is

T (x) = τ + 1 − N(x)

2
T (x − δ) + N(x)T (x) + 1 − N(x)

2
T (x + δ). (B.1)

Simplifying and collecting terms,

T (x) = τ + 1

2

[
T (x − δ) − N(x)T (x − δ) + N(x)T (x) + T (x + δ)

− N(x)T (x + δ)
]
. (B.2)

Expand T (x − δ) and T (x + δ) using Taylor series, divide by τ , and take the limit as
τ, δ → 0 to obtain the mean first passage time equation

d(x)
d2T

dx2
+ 1 = 0 (B.3)

where d(x) = limδ,τ→0
δ2[1−N(x)]

2τ
is the spatially variable diffusion coefficient.

Appendix C: Incorporating movement data into the first passage time equation

Begin with the master equation

T (x) = τ +
∫ ∞

−∞
k(x, x ′, τ ) T (x ′) dx ′. (C.1)

Let x ′ = x +a and define a new redistribution kernel as K(x,a, τ ) where a is the directed
length of the move and (C.1) becomes

T (x) = τ +
∫ ∞

−∞
K(x,a, τ )T (x + a) da. (C.2)
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Expand x + a using Taylor series,

T (x) = τ +
∫ ∞

−∞
K(x,a, τ )

(
T (x) + a

∂

∂x
T (x) + a2

2

∂2

∂x2
T (x) + h.o.t.

)
da. (C.3)

Divide by τ and use the fact that
∫ ∞

−∞ K(x,a, τ ) da = 1 to obtain

∫ ∞

−∞
K(x,a, τ )

(
T (x) + a

∂

∂x
T (x) + a2 ∂2

∂x2
T (x) + h.o.t.

)
da + 1 = 0. (C.4)

Because the derivatives are independent of a it is possible to remove them from the inte-
gral. Take the limit as δ, τ → 0 and the equation becomes

c(x)
∂

∂x
T (x) + d(x)

∂2

∂x2
T (x) + 1 = 0 (C.5)

where

c(x) = lim
τ→0

1

τ

∫ ∞

−∞
a K(x, a, τ ) da (C.6)

and

d(x) = lim
τ→0

1

2τ

∫ ∞

−∞
a2 K(x,a, τ ) da. (C.7)

Appendix D: Extension of the mean first passage time equation for one-
to two-dimensions

From the random walk in two-dimensions, the master equation is

T (x) = τ +
∫

k(x,x′, τ )T (x′) dx′. (D.1)

Rewrite x′ = x+a and define a new redistribution kernel K(x,a, τ ), where a is the vector
representing the move. The equation becomes

T (x) = τ +
∫

K(x,a, τ ) T (x + a) da. (D.2)

Expand T (x + a) using a two-dimensional Taylor series to obtain the equation

T (x) = τ +
∫

K(x,a, τ )

(
T (x) + a1

∂

∂x
T (x) + a2

∂

∂y
T (x) + a2

1

2

∂2

∂x2
T (x)

+ a1a2

2

∂2

∂x∂y
T (x) + a2a1

2

∂2

∂y∂x
T (x) + a2

2

2

∂2

∂y2
T (x) + h.o.t.

)
. (D.3)
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Divide by τ , and using the fact that
∫

K(x,a, τ ) da = 1, rearrange and take the limit as
τ → 0 to obtain the mean first passage time equation

c(x) · ∇T (x) + dxx(x)
∂2

∂x2
T (x) + dxy(x)

∂2

∂x∂y
T (x) + dyx(x)

∂2

∂y∂x
T (x)

+ dyy(x)
∂2

∂y2
T (x) + 1 = 0 (D.4)

where

c(x) = lim
τ→0

1

τ

∫
aK(x,a, τ ) da, (D.5)

dxx(x) = lim
τ→0

1

2τ

∫
a2

1 K(x,a, τ ) da, (D.6)

dxy(x) = lim
τ→0

1

2τ

∫
a1a2 K(x,a, τ ) da, (D.7)

dyx(x) = dxy(x), (D.8)

dyy(x) = lim
τ→0

1

2τ

∫
a2

2 K(x,a, τ ) da. (D.9)

In the case of isotropic diffusion and constant bias toward the point x = 0 (such as in the
centralizing tendency model), (D.4) simplifies to (24), where the advection coefficient is
c(x) = −c x/‖x‖ (x is a unit vector pointing in the direction of the den site and c is the
advection speed) and the diffusion coefficient is a constant, d . We now show explicitly
how to obtain these coefficients from movement data. The methods used here are taken
directly from Moorcroft and Lewis (2006). We assume the movement kernel K can be
expressed as the product the distribution of distances moved (ρ = ‖a‖) and the distribution
of movement directions (φ = tan−1(a2/a1)),

K(x,a, τ ) = 1

ρ
fτ (ρ)Kτ (φ, φ̂) (D.10)

where the distribution of movement distances is exponential with mean ρ̄τ

fτ (ρ) = ρ̄τ exp[−ρ̄τ ρ] (D.11)

and the movement directions follows the von Mises distribution

Kτ(φ, φ̂) = 1

2πI0(κτ )
exp

[
κτ cos(φ − φ̂)

]
(D.12)

with mean direction φ̂ (−π ≤ φ̂ ≤ π) and concentration parameter κτ (κτ ≥ 0). Here,
φ̂ = tan−1(y/x) is the direction of the individuals den site from its current location (x, y).
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Using trigonometric identities as given in Appendix E of Moorcroft and Lewis (2006)
yields the following formulae for the coefficients,

c = lim
τ→0

ρ̄τ κτ

2τ
, (D.13)

d = lim
τ→0

(ρ̄)2

4τ
. (D.14)

Therefore, the advection speed c and the diffusion coefficient d can be estimated directly
from the mean distance moved and the von Mises concentration parameter, which are
estimated by fitting the exponential and von Mises distributions to the observed move
distances and directions, respectively (see Fig. 3.6 of Moorcroft and Lewis, 2006).

Appendix E: Alternate derivation of the mean first passage time equation

We follow closely the derivation in Gardiner (1985). Consider an animal moving in the
one-dimensional domain [a, b], with absorbing boundary conditions at a and b. The prob-
ability the particle is still in the interval at time t is given by

∫ b

a

p(x ′, t |x,0) dx ′ ≡ G(x, t) (E.1)

where p(x ′, t |x,0) is the probability the animal is at location x ′ at time t given it was at
location x at time 0. If the animal leaves the interval at time T , we obtain the relationship

Pr (T ≥ t) =
∫ b

a

p(x ′, t |x,0) dx ′ = G(x, t). (E.2)

Because the system is homogeneous in time p(x ′, t |x,0) = p(x ′,0|x,−t) and the back-
ward Kolmogorov equation becomes (as we are differentiating with respect to t , which
now has a negative sign in front),

∂

∂t
p(x ′, t |x,0) = c(x)

∂

∂x
p(x ′, t |x,0) + d(x)

∂2

∂x2
p(x ′, t |x,0). (E.3)

Integrating both sides of (E.3) over x ′, taking the integral sign inside the derivative, and
applying the definition of G(x, t),

∂

∂t
G(x, t) = c(x)

∂

∂x
G(x, t) + d(x)

∂2

∂x2
G(x, t) (E.4)

where G(x,0) = 1, x ∈ (a, b) and 0 elsewhere, from the initial condition on (E.3), and
p(x ′,0|x,0) = δ(x − x ′). In addition, if x = a or b, G(a, t) = G(b, t) = 0 since the
particle is absorbed immediately, and so Pr(T ≥ t) = 0. Now, T is a random variable
with distribution function 1 − G(x, t). Therefore, using the definition of expectation of a
random variable, the mean first passage time T (x) is given by

T (x) = −
∫ ∞

0
t

∂

∂t
G(x, t). (E.5)
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After applying integration by parts,

T (x) =
∫ ∞

0
G(x, t) dt. (E.6)

To obtain the familiar differential equation for mean first passage time (Eq. (7)), integrate
Eq. (E.4) over t ∈ (0,∞), and again take the integrals inside the derivative.

Appendix F: Numerical methods

The spatially heterogeneous mean first passage time problem was solved using COMSOL
Multiphysics. The landscape was defined in COMSOL using the draw tools. The model
was defined using the PDE, coefficient form (stationary analysis) application mode. The
general pde, adapted for the red fox example is

⎧
⎪⎪⎨

⎪⎪⎩

d∇2 T − c(x) · ∇ T + 1 = 0 in ∂�,

n · d ∇T = 0 on ∂�ext,

T = 0 on ∂�int,

(F.1)

where c(x) = (CX,CY)T are MATLAB functions that compute the spatially dependent
advection coefficients, d is the constant diffusion coefficient, � is the computational do-
main, ∂�ext is the boundary of the home range with outward pointing normal n, and ∂�int

is the boundary of the detection region around the prey.
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